
Efficient solid state NMR powder simulations using SMP and
MPP parallel computation

Jørgen Holm Kristensen* and Ian Farnan

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

Received 7 August 2002; revised 31 December 2002

Abstract

Methods for parallel simulation of solid state NMR powder spectra are presented for both shared and distributed memory

parallel supercomputers. For shared memory architectures the performance of simulation programs implementing the OpenMP

application programming interface is evaluated. It is demonstrated that the design of correct and efficient shared memory parallel

programs is difficult as the performance depends on data locality and cache memory effects. The distributed memory parallel

programming model is examined for simulation programs using the MPI message passing interface. The results reveal that both

shared and distributed memory parallel computation are very efficient with an almost perfect application speedup and may be

applied to the most advanced powder simulations.

� 2003 Elsevier Science (USA). All rights reserved.

Keywords: Parallel simulation of solid state NMR powder spectra; Shared and distributed memory parallel supercomputers; Parallel programming in

the OpenMP application programming interface and MPI message passing interface

1. Introduction

The lineshapes obtained in solid state NMR experi-
ments on polycrystalline or amorphous powders are

known to be sensitive to structural and motional details

and may be used to characterize many different solid

materials [1,2]. The structural and motional information

can usually be extracted only by accurate simulation of

the lineshapes. The calculation of powder spectra in-

volves averaging the density operator over a large

number of crystallite orientations. The literature pre-
sents a variety of numerical methods to perform the

powder averaging. These include techniques to select the

crystallite orientations and weights and methods to in-

terpolate spectral frequencies and intensities [3–16]. The

performance of these techniques is known to be com-

parable especially for simulations of broad lineshapes

where the number of crystallites is substantial [17]. The

evaluation of the density operator often requires very

time consuming operations and reducing the number of

these by averaging over a smaller but carefully chosen
set of crystallites is a subject of continuing interest and

importance.

Because of the nature of the problems being solved it

is unlikely that further developments of powder inte-

gration methods will provide the orders of magnitude

improvement in efficiency needed for the most advanced

powder simulations. However, an alternative that has

been relatively neglected is the method of parallel com-
putation [18–22]. This is eminently suited to powder

simulations because most of the computation time is

spent on the repeated evaluation of the density operator

and averaging of the result with a predictable pattern of

communication between processors. The only practical

purpose of parallel computation is to minimize the ex-

ecution time of an application program. Because many

powder simulations exceed the capabilities of single
processors it is compelling to exploit the effects of mul-

tiple processors to provide sufficient computational

power. It is noted that there are several programs

available for powder simulations that may have various

Journal of Magnetic Resonance 161 (2003) 183–190

www.elsevier.com/locate/jmr

*Corresponding author. Present address: Department of Chemis-

try, University of Cambridge, Lensfield Road, Cambridge CB2 1EW,

UK.

E-mail address: jhk28@cam.ac.uk (J.H. Kristensen).

1090-7807/03/$ - see front matter � 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S1090-7807(03)00007-7

mail to: jhk28@cam.ac.uk

advantages [23–25]. These programs have not been
shown to provide any significant parallel capabilities

and could possibly be improved considerably by intro-

ducing parallel powder techniques.

In this paper the principles of solid state NMR par-

allel powder simulations are discussed. The methods

may be applied to any simulation program and are valid

for any powder integration method. It is shown that

efficient parallel programs may be developed for both
shared and distributed memory parallel supercomput-

ers. The programs have been implemented on different

computer platforms and the performance has been in-

vestigated in detail. The results show that it is possible to

obtain an almost perfect application speedup demon-

strating the considerable advantage of parallel powder

simulation.

2. Theory

The most advanced and comprehensive simulations

of solid state NMR spectra are based on density oper-

ator algebra [26–28]. This formalism provides a useful

mechanism to evaluate the different coherences and

alignments of nuclear spin ensembles and describe co-
herence transfer processes and stochastic phenomena

like molecular motion and relaxation. The density op-

erator rðt;XÞ is obtained as the solution to the stochastic

Liouville–von Neumann equation

o

ot
jrðt;XÞi ¼ Aðt;XÞjrðt;XÞi; ð1Þ

where the coefficient operator

Aðt;XÞ ¼ �iAdðHðt;XÞÞ þ Dðt;XÞ þ N ð2Þ
involves the Hamiltonian Hðt;XÞ, the relaxation opera-
tor Dðt;XÞ, and the stochastic operator N. For a poly-

crystalline sample the anisotropy of the system implies

that the nuclear spin interactions depend on the orien-

tation X of the individual crystallites. The nuclear spin

interactions are represented by the Hamiltonian,

whereas the stochastic operator describes the effects of

molecular motion. The motion induces random fluctu-

ations in the nuclear spin interactions. These fluctua-
tions may stimulate the relaxation of the system and are

described by the relaxation operator.

For any crystallite orientation the observable quad-

rature signal P ðt;XÞ ¼ hIþjrðt;XÞi is calculated from the

corresponding density operator. The simulation of

powder spectra involves evaluating the observable sig-

nal for all crystallite orientations to obtain the powder

average

P ðtÞ ¼
R
V P ðt;XÞdV

R
V dV

; ð3Þ

where the integration domain V defines all possible
crystallite orientations. For most systems it is impossible

to evaluate the powder integral exactly and the solution
is usually approximated using a numerical integration

method. The parallel powder techniques introduced in

this paper are valid for any integration method and the

parallel performance is usually independent of the

scheme. However, the evaluation of the density operator

depends on the integration method and is often com-

putationally expensive especially for systems exhibiting

molecular motion. This demonstrates that although the
parallel speedup may be independent of the integration

method the absolute computation time depends explic-

itly on the particular implementation.

The evaluation of the powder average requires the

calculation of the density operator for all crystallite

orientations and is usually very expensive. In order to

improve performance it is useful to distribute the pow-

der integration over multiple processors and keep the
evaluation of the density operator as local as possible to

minimize communication requirements. The possibility

of parallel powder integration becomes evident by par-

titioning the integration domain V ¼ V1 [V2 [

 [VN
into a set of subdomains V1; . . . ; VN and rewriting the

powder integral P ðtÞ ¼ P1ðtÞ þ P2ðtÞ þ

 þ PN ðtÞ as a

sum of subintegrals P1ðtÞ; . . . ; PN ðtÞ where

PnðtÞ ¼
R
Vn
P ðt;XÞdVnR

V dV
ð4Þ

defines the local powder average for each integration

subdomain. In parallel powder integration it is most
efficient to choose the number of subdomains N equal to

the number of available processors. The parallel part of

the algorithm occurs as each processor computes the

powder subintegral for a different subset of crystallite

orientations. At the end of the computation the local

subintegrals are mapped onto the master processor and

combined into a global powder integral. It is always

possible to define the powder partition such that the
integration subdomains have equal volume demon-

strating that load balancing is perfect. The individual

subintegrals can be evaluated independently of one an-

other and communication requirements are conse-

quently simple. An important advantage of this

approach is that it is valid for any numerical integration

method and usually the parallel performance is inde-

pendent of the implementation. This implies that the
approach may be used for any scheme to select the

crystallite orientations and interpolate the spectral fre-

quencies and intensities subject to the condition that the

method is valid for the particular simulation. This is

exemplified by the Alderman, Solum, and Grant inter-

polation method that may be applied successfully to

simulations of many different powder spectra but is

known to be invalid for simulations of molecular motion
[23].

The only practical reason to write parallel powder

simulation programs is to achieve improved and scalable

184 J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190

performance. Most sequential programs are tested for
correctness by seeing whether they give the right answer.

This is different from parallel programs that must be

designed not only to provide the right answer but also to

decrease the execution time. Therefore, measuring the

speed of execution is part of testing parallel programs to

see whether they perform as intended. It is important to

understand that some problems lend themselves natu-

rally to a programming style that will run efficiently on
multiple processors while others are easy to code in ways

that will run even slower in parallel than the original

sequential program. Modern parallel multiprocessors

are complicated systems and parallel programming in-

volves additional design and coding difficulties. The

variety of commercially available parallel machines is

large and the performance characteristics vary widely.

Tuning a parallel program for one system may not im-
prove and may even reduce performance on another.

However, in recent years many multiprocessor systems

have shared the same fundamental characteristics. In

particular, they have used standard processors con-

nected together via either a bus system or a network and

they have contained caches close to the processors to

minimize the time spent accessing memory. Although

the differences between these machines can be large the
factors that affect performance on each one are re-

markably similar.

In order to demonstrate the significance of parallel

powder simulation it is necessary to define an index to

measure how well parallel programs perform. In most

applications what matters is the elapsed time relative to

the original serial program. This is expressed in terms of

the application speedup

SðNÞ ¼
Elapsed time of serial program

Elapsed time of parallel program with N processors
;

ð5Þ

which depends explicitly on the number N of processors.

In a perfect parallel program the application speeds up

by a factor equal to the number of processors. In some

cases where data locality and cache memory effects are

important the application may speed up by a factor

greater than the number of processors. However, de-

pending on the nature of the application and the com-

puter architecture parallel programs often exhibit less
than perfect speedup.

It is obviously necessary to parallelize a sufficiently

large percentage of an application program to obtain

good parallel performance. However, as the number of

processors is increased the performance may become

dominated by the serial parts of the program. It is only

possible to achieve good parallel performance if the time

spent in the serial parts and on communication is small
compared to the time spent in the parallel portions. This

can only be realized if the problem is inherently parallel.
The two most important factors determining the effi-

ciency of a parallel program are the time spent in the

parallel parts compared to the time spent in the serial

parts and the time spent on communication between the

parallel parts of the program. The serial parts will exe-

cute in time ð1� F ÞTS, where F is the fraction of the

program that is parallelizable and TS is the serial exe-

cution time. The parallel parts will execute in time
S�1
P ðNÞFTS, where SPðNÞ is the parallel speedup for N

processors. The execution time for the parallel program

is TPðNÞ ¼ ð1� F ÞTS þ S�1
P ðNÞFTS, which is the sum of

the serial and parallel execution times. The overall

speedup is obtained from

SðNÞ ¼ TS
TPðNÞ ¼

SPðNÞ
SPðNÞð1� F Þ þ F

; ð6Þ

which is known as Amdahl�s law [18–22]. This reveals

that no matter how successfully the program is parall-

elized and no matter how many processors are used

eventually the performance will be limited by the pro-
portion F of the code that is parallelizable. For small

numbers of processors Amdahl�s law has a moderate

effect but as the number of processors increases the effect

becomes surprisingly large.

The most important factors affecting parallel speedup

are coverage, granularity, load balancing, locality, and

syncronization. The first three are fundamental to par-

allel programming on any type of multiprocessor system
while the latter two are related to the details of the

computer architecture. The coverage refers to the per-

centage of a program that may be parallelized. The form

of Amdahl�s law demonstrates that it is important to

have a high coverage although this by itself may not be

sufficient to guarantee good parallel performance. An-

other factor that affects performance is granularity. This

defines how much work is in each parallel region. The
granularity is important because a program incurs an

overhead each time it encounters a parallel region. If the

coverage is perfect but the program has a large number

of small parallel regions then performance may be lim-

ited by granularity. In most implementations parallel

execution will not terminate until the last active pro-

cessor has finished its assignments. If some processors

are assigned more work than others performance may
suffer because of improper load balance. The locality

and syncronization refer to the cost of communication

between processors. The locality is the property that if a

program accesses a memory location there is a much

higher than random probability that it will again access

the same location soon. A second aspect of locality is

that if a program accesses a memory location there is a

much higher than random probability that it will access
a nearby location soon. The first type of locality is called

temporal and the second is called spatial. The locality is

often the most critical factor affecting performance on

J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190 185

modern cache based systems. There is a limit to how
much memory can be put on each processor chip and

accessing memory that is farther away on some other

chip is significantly slower. The cache memory provides

a way to exploit locality and insure that a much larger

percentage of memory references are to faster memory.

Because caches are designed to exploit locality the per-

formance of a parallel program can be improved if the

code expresses high locality.

3. Experimental results

3.1. Shared memory parallel computation

There is currently no single software environment

that absorbs the differences in the architecture of parallel
computers and provides a single programming model. It

is therefore necessary to adopt different programming

models for different computer architectures in order to

balance performance and the effort to program. It is

often useful to classify parallel computational models

according to whether memory is shared or distributed

[29,30]. The symmetric multiprocessor (SMP) architec-

ture illustrated in Fig. 1 implements shared system re-
sources such as memory that can be accessed equally

from all the processors. Each processor has its own

cache memory that may have several layers. The con-

nection between the caches and the memory is built as

either a bus or a crossbar switch. A single operating

system controls the SMP computer and schedules pro-

cesses and threads on processors so that the load is

balanced.
For shared memory parallel architectures there are

compilers that can parallelize an application program

using explicit compiler directives provided by the pro-

grammer. These directives describe the parallelism in the

source code and are usually supported by a library of

subroutines and environment variables. The compiler

directives along with the supporting subroutines and

environment variables comprise an application pro-
gramming interface as exemplified by the OpenMP and

HPF parallel programming standards [31,32]. The ex-

ecutables generated by shared memory compilers run in

parallel using multiple threads and these can commu-

nicate with each other by use of shared memory without

explicit message passing statements. The individual

threads represent different program controls and exe-

cution stacks and are usually associated with different
physical processors. During the execution of a program

the behavior of each thread is controlled exclusively by

its thread number. The shared memory execution model

is illustrated in Fig. 2 where a single master thread ex-

ecutes all statements until a parallel region is encoun-

tered. At the entrance to the parallel region the master

thread forks a set of parallel slave threads. The master

and slave threads execute all statements in the parallel

region redundantly. The parallel speedup comes from

each thread operating on a different part of the data or

the code concurrently. At the end of the parallel region

the slave threads are joined to the master thread that

executes all statements in the sequential regions. In the

case of parallel powder simulations each parallel region

corresponds to the evaluation of a local powder subin-
tegral.

The last decade has seen a tremendous increase in the

widespread availability and capability of shared memory

parallel computers. These have not only become much

more prevalent but also contain increasing numbers of

processors. However, the physical limitation on the

memory bandwidth makes it difficult to develop shared

memory multiprocessors with more than a few tens of
processors. In order to achieve the SMP model with a

large number of processors one must allow some

memory references to take longer than others. This is

the fundamental principle in shared memory architec-

tures that provide nonuniform memory access

(NUMA). In this model each processor has its own

memory and cache and is located inside a computational

Fig. 1. The architecture of (a) shared and (b) distributed memory

parallel computers. The shared memory system has multiple processors

that can operate in parallel and cache memory modules associated with

every processor. The cache modules are connected to the main memory

through a bus or crossbar switch allowing the processors to cooperate

and share data. The distributed memory system is designed with

multiple computational nodes each containing a single processor and

memory modules. Every processor can only directly access memory

associated with its local node. In order to cooperate and share data the

processors must transmit messages through an interconnection net-

work.

186 J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190

node. The nodes are connected to each other through an
interconnection network and the system is designed such

that any processor can access data in any memory.

However, accessing memory that is in the local node or

a nearby node may be faster than accessing memory that

is in a remote node. This architecture combines the

logical view of a shared memory machine with physi-

cally distributed memory and may support hundreds

and even thousands of processors. The NUMA model is
implemented in the SGI Origin 2000/3000 series of

computers.

In order to give a representative example of the per-

formance of a shared memory multiprocessor system we

have chosen the SGI Origin 2000 to generate sample

numbers. Although the exact numbers will differ it is
expected that other cache based shared memory parallel

computers will have similar performance characteristics.

The SGI Origin 2000 is known to be the most scalable of

existing cache based shared memory machines and

provides a nearly uniform memory access model to all of

its main memory. The system configuration involves 64

MIPS R12000 300MHz processors each with 32 kB data

cache, 32 kB instruction cache, and 8MB secondary
cache. The system has 32 computational nodes each

containing 2 processors and 4GB memory. Although

the system implements the NUMA architecture the

differences between local and remote memory accesses

are usually much smaller than cache effects and data

locality problems are usually related entirely to cache

memory.

Any performance and scalability analysis involves
estimating the computation and communication re-

quirements of a particular problem and the study of how

these requirements change as the problem size or the

number of processors change. In the case of shared

memory parallel architectures we have parallelized a

Fortran 95 simulation program using OpenMP compiler

directives. The program is designed to simulate effects of

finite pulse lengths and molecular motion on central and
satellite transition powder spectra of any quadrupole

nucleus [27,28]. The result of an experimental simulation

is shown in Fig. 3 which includes the effects of finite

pulse lengths and molecular motion. The details of the

integration method determine the computation time but

are irrelevant when evaluating the parallel performance.

This depends on the coverage and granularity of the

program that are determined by the total number of

Fig. 3. Result of parallel simulation of a quadrupole echo 2H NMR

powder spectrum. The system is specified by a quadrupole tensor with

quadrupole coupling constant CQ ¼ 200kHz and quadrupole asym-

metry parameter gQ ¼ 0:10. The quadrupole tensor is assumed to

reorient between three equally probable orientations XðnmÞ ¼ f0;p�
2 arctanð

ffiffiffi
2

p
Þ; 2p½m�1�

3
g with rate constants logðkmnÞ ¼ logðknmÞ ¼ 2 cor-

responding to ultraslow motion of a methyl group. The simulation

implemented the rf field strength mrf ¼ 100 kHz, pulse lengths

sp1 ¼ sp2 ¼ 2:5ls, and pulse delays sd1 ¼ sd2 þ 1
2
sp1 ¼ 50ls. The

number of crystallites depends on the accuracy of the calculation and

the powder integration method and determines the granularity of the

parallel simulation.

Fig. 2. Diagrams illustrating the execution of (a) shared and (b) dis-

tributed memory parallel programs. The serial program proceeds se-

quentially from the region S1 to S2 through the regions P1 through PN
that can be processed in parallel. The shared memory parallel program

first processes serially with a single master thread in the sequential

region S1. When the master thread encounters the parallel region it

forks some additional threads often referred to as the slave threads.

Each thread represents an independent program counter that executes

within the shared address space with direct access to all of its variables.

The team of threads processes the regions P1 through PN in parallel and

when finished the slave threads are joined to the master thread that

resumes execution in the sequential region S2. In the distributed

memory parallel program one process runs on each node and the

processes communicate with each other during the execution of the

parallelizable part P1 through PN. The processes have only local

memory but are able to communicate via the interconnection network.

J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190 187

crystallites and the cost of evaluating the density oper-
ator. For most powder simulations the coverage and

granularity are large indicating that the parallel speedup

may be substantial. The powder iterations have been

assigned in large blocks and distributed evenly among

the processors. This improves the granularity and

eliminates any load imbalance problems. In parallel

powder simulations the coverage is almost perfect be-

cause a large part of the computation time is spent on
the powder iterations. This suggests in accordance with

Amdahl�s law that the parallel performance of powder

simulations may be very high.

The results of an experimental performance analysis

are shown in Fig. 4 for the SGI Origin 2000 shared

memory parallel multiprocessor. It is evident that the

parallel speedup is almost perfect for this application.

The results can be generated N times faster when using
N processors compared to using only a single processor.

This performance level cannot be supported by any

single processor system. Even the fastest single proces-

sors currently available deliver a performance equivalent

to only about ten of the Origin 2000 processors. Because
of these significant performance gains it becomes pos-

sible to provide much more detailed and accurate sim-

ulations of polycrystalline or amorphous solids.

There are considerable design and coding difficulties

involved in writing correct and efficient shared memory

parallel programs. In order to demonstrate this we have

produced a parallelized version of the Fortran 95 sim-

ulation program using OpenMP compiler directives
without any concern about data locality and cache ef-

fects. The results of an experimental calculation are

shown in Fig. 4 for the SGI Origin 2000 shared memory

parallel supercomputer. It is seen that the parallel per-

formance is nearly perfect for small numbers of pro-

cessors. However, when the program executes on a large

number of processors the parallel performance suffers

dramatically. This version of the parallel program in-
volves only modest code modifications and has not been

designed to match the memory architecture of the par-

allel machine. This causes significant data locality and

cache memory effects that reduce the parallel perfor-

mance. In order to get sufficient parallel speedup it is

necessary to modify the code fundamentally. This is a

difficult problem that depends on the programming style

and program design. However, the additional pro-
gramming effort is justified by the significant parallel

speedup that is possible for most powder simulations.

3.2. Distributed memory message passing computation

The alternative to shared memory is the distrib-

uted memory architecture where each processor is only

capable of directly addressing memory physically asso-
ciated with it. The distributed memory parallel pro-

gramming model is targeted for the massively parallel

processors (MPP) architecture. This architecture is il-

lustrated in Fig. 1 where each node has its own pro-

cessor and memory. The operating system is running on

each node that can be considered as a separate work-

station. Despite the term massively the number of nodes

is not necessarily large and usually there is no limitation.
In the MPP architecture the memory is not physically

shared among nodes and parallel processes have to

transmit messages over an interconnection network in

order to access data that other processes have updated.

This is different from the shared memory model where

individual threads access memory without knowing

whether they are triggering remote communication at

the hardware level.
For distributed memory parallel systems the message

passing programming model is a useful and complete

framework in which to express parallelism [33,34]. The

message passing programming model has been stan-

dardized by the message passing interface (MPI) which

defines an effective and portable application program-

ming interface for writing parallel programs. The mes-

Fig. 4. Experimental results illustrating the performance of OpenMP

shared memory parallel powder simulation programs. The results

demonstrate (a) the possibility of an almost perfect application

speedup and (b) the adverse effects of communication overhead in

parallel programs that have not been modified to exhibit locality. The

programs were executed on a SGI Origin 2000 shared memory parallel

supercomputer.

188 J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190

sage passing execution model is shown in Fig. 2 for
distributed memory systems. The message passing in-

terface is not a computer language but a library of

subroutines to express communication. The message

passing programs are compiled with ordinary compilers

and linked with the MPI library to produce the paral-

lel executables. In the message passing model a com-

putation remains a collection of parallel processes

communicating with messages transmitted over the in-
terconnection network. Every process represents an

address space and one or more threads. The processes

are associated with different processors where a pro-

cessor represents a central processing unit capable of

executing a program. Every process has an identifier

called rank and although each process may execute the

same program the behavior of each process can be made

different by using the value of the rank. This is similar to
shared memory programming where the behavior of

each thread is defined by its thread number.

The specific details of the communication network

are not a part of the message passing computational

model. The precise connection topology is irrelevant to

the programmer and the model may be implemented on

a wide variety of hardware architectures. The message

passing interface provides the control missing from the
compiler based models in dealing with data locality. As

modern processors become faster management of their

caches and the memory hierarchy has become the key to

achieving maximum performance. The message passing

interface provides a mechanism for the programmer to

explicitly associate specific data with processes and thus

allow the compiler and cache management hardware to

function fully. This explains why message passing has
emerged as one of the more widely used models for

expressing parallel algorithms. The message passing

model matches the hardware of most modern parallel

supercomputers. Representative systems include the

IBM SP2/SP3 parallel computers and Beowulf clusters

of workstations.

As an example of a massively parallel processors ar-

chitecture we have chosen the IBM SP2 parallel super-
computer. The system configuration involves 160

Power3-II 375MHz processors each with 128 kB data

cache, 128 kB instruction cache, and 8MB secondary

cache. The system is designed with 10 SMP nodes each

with 16 processors and 12GB memory. The SMP nodes

are connected via a high performance IBM crossbar

switch.

In order to demonstrate the usefulness of distributed
memory message passing parallel powder computation

we have parallelized the Fortran 95 simulation program

described above using the MPI message passing pro-

gramming model. The performance was monitored by

measuring the application speedup for the powder sim-

ulation illustrated in Fig. 3. The results are shown in

Fig. 5 as function of the number of processors. The

parallel speedup is seen to increase by a factor of N as

we apply N processors to the same simulation indicating

high parallel efficiency. The computation time differs

slightly between 2–32 and 32–64 processors as a result of
increasing communication overhead. Because many

powder simulations are very expensive it is clear that

parallel computation can have an enormous impact on

performance. The advantage of distributed memory

programming is that data locality effects are less im-

portant making it easier to produce efficient parallel

programs.

4. Summary

In this paper numerical methods for parallel com-

putation of solid state NMR powder spectra have been

described and investigated in detail. The approach in-

volves distributing the powder integration over multiple

processors and keeping the evaluation of the density
operator as local as possible. This technique has a sub-

stantial parallel efficiency as a result of high coverage

and granularity as well as modest communication re-

quirements. The methods have been implemented to

parallelize a simulation program designed to calculate

effects of finite pulse lengths and molecular motion for

both central and satellite transition spectra of any

quadrupole nucleus.
The programming model depends on the computer

architecture and is different for shared and distributed

memory multiprocessors. In the case of shared memory

architectures we have parallelized the simulation

program using the OpenMP application programming

interface. The computation and communication re-

quirements were estimated by evaluating the parallel

performance for different numbers of processors on an
SGI Origin 2000 shared memory parallel supercom-

puter. The results indicate a high parallel efficiency with

Fig. 5. Experimental results demonstrating the performance of an MPI

distributed memory message passing parallel powder simulation pro-

gram. The program was executed on an IBM SP2 massively parallel

processors supercomputer.

J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190 189

an almost perfect parallel speedup. However, the results
show that data locality and cache memory effects reduce

parallel performance and the programs must be sub-

stantially modified in order to exhibit high locality.

The distributed memory parallel programming model

was evaluated by parallelizing the simulation program

using the MPI message passing interface. The message

passing programming model provides the control nee-

ded to express data locality and for efficient cache
management. The parallel performance was evaluated

by measuring the parallel speedup for different numbers

of processors on an IBM SP2 massively parallel pro-

cessors supercomputer. The results reveal a high parallel

efficiency and show that distributed memory parallel

computation can have an enormous impact on perfor-

mance. An important advantage of the distributed

memory programming model is that it matches the ar-
chitecture of many modern supercomputers.

Acknowledgments

The UK Joint Infrastructure Fund (JIF) and Joint

Research Equipment Initiative (JREI) supported this

research. The Cambridge-Cranfield High Performance
Computing Facility (HPCF) is acknowledged for the use

of the SGI Origin 2000 and IBM SP2 parallel super-

computers.

References

[1] M. Mehring, Principles of High Resolution NMR in Solids,

Springer-Verlag, Berlin, 1983.

[2] K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid State

NMR and Polymers, Academic Press, London, 1994.

[3] D.L. VanderHart, H.S. Gutowsky, T.C. Farrar, J. Am. Chem.

Soc. 89 (1967) 5056.

[4] G.V. Veen, J. Magn. Reson. 30 (1978) 91.

[5] K. Balasubramanian, L.R. Dalton, J. Magn. Reson. 33 (1979)

245.

[6] K.W. Zilm, R.T. Conlin, D.M. Grant, J. Michl, J. Am. Chem.

Soc. 102 (1980) 6672.

[7] K.W. Zilm, D.M. Grant, J. Am. Chem. Soc. 103 (1981) 2913.

[8] J.G. Hexam, M.H. Frey, S.J. Opella, J. Chem. Phys. 77 (1982)

3847.

[9] S. Ganapathy, V.P. Chacko, R.G. Bryant, J. Magn. Reson. 57

(1984) 239.

[10] D.W. Alderman, M.S. Solum, D.M. Grant, J. Chem. Phys. 84

(1986) 3717.

[11] A. Kreiter, J. H€uutterman, J. Magn. Reson. 93 (1991) 12.

[12] M.J. Mombourquette, J.A. Weil, J. Magn. Reson. 99 (1992)

37.

[13] J.M. Koons, E. Hughes, H.M. Cho, P.D. Ellis, J. Magn. Reson.

114 (1995) 12.

[14] D. Wang, G.R. Hanson, J. Magn. Reson. 117 (1995) 1.

[15] M. Bak, N.C. Nielsen, J. Magn. Reson. 125 (1997) 132.

[16] M. Ed�een, M.H. Levitt, J. Magn. Reson. 132 (1998) 220.

[17] A. Ponti, J. Magn. Reson. 138 (1999) 288.

[18] R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam-Hilger,

Philadelphia, 1988.

[19] S.G. Akl, The Design and Analysis of Parallel Algorithms,

Prentice-Hall, New Jersey, 1989.

[20] K.M. Chandy, S. Taylor, An Introduction to Parallel Program-

ming, Jones and Bartlett, Boston, 1992.

[21] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to

Parallel Computing. Design and Analysis of Algorithms, Addi-

son-Wesley, Boston, 1994.

[22] I. Foster, Designing and Building Parallel Programs. Concepts

and Tools for Parallel Software Engineering, Addison-Wesley,

Boston, 1995.

[23] M.S. Greenfield, A.D. Ronemus, R.L. Vold, R.R. Vold, P.D.

Ellis, T.E. Raidy, J. Magn. Reson. 72 (1987) 89.

[24] S.A. Smith, T.O. Levante, B.H. Meier, R.R. Ernst, J. Magn.

Reson. 106 (1994) 75.

[25] M. Bak, J.T. Rasmussen, N.C. Nielsen, J. Magn. Reson. 147

(2000) 296.

[26] U. Fano, Rev. Mod. Phys. 29 (1957) 74.

[27] J.H. Kristensen, G.L. Hoatson, R.L. Vold, Solid State Nucl.

Magn. Reson. 13 (1998) 1.

[28] J.H. Kristensen, I. Farnan, J. Chem. Phys. 114 (2001) 9608.

[29] J. Hennessey, D. Patterson, Computer Architecture. A Quantita-

tive Approach, Morgan-Kaufmann, San Fransisco, 1996.

[30] D. Culler, J. Singh, A. Gupta, Parallel Computer Architecture. A

Hardware/Software Approach, Morgan-Kaufmann, San Fran-

cisco, 1999.

[31] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele, M.E.

Zosel, The High Performance Fortran Handbook, MIT Press,

Cambridge, MA, 1994.

[32] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R.

Menon, Parallel Programming in OpenMP, Morgan-Kaufmann,

San Francisco, 2001.

[33] P. Pacheco, Parallel Programming with MPI, Morgan-Kaufmann,

San Francisco, 1996.

[34] W. Gropp, E. Lusk, A. Skjellum, Using MPI. Portable Parallel

Programming with the Message Passing Interface, MIT Press,

Cambridge, MA, 1999.

190 J.H. Kristensen, I. Farnan / Journal of Magnetic Resonance 161 (2003) 183–190

	Efficient solid state NMR powder simulations using SMP and MPP parallel computation
	Introduction
	Theory
	Experimental results
	Shared memory parallel computation
	Distributed memory message passing computation

	Summary
	Acknowledgements
	References

